O21-Zn11-042	109.0 (3)	O22—P22—O42 ^{iv}	107.5 (6)
O32-Zn11-042	117.3 (2)	O41-P22-O42 ^{iv}	108.7 (4)
O12-Zn12-O22	105.2 (2)	O12 ⁱⁱⁱ —P31—O21	110.5 (6)
O12-Zn12-031	108.2 (3)	O12 ^{III} P31O31 ^V	108.6 (5)
012-Zn12-041"	108.4 (4)	O12 ⁱⁿ —P31—O32 ^v	110.4 (3)
O22-Zn12O31'	112.2 (2)	O21—P31—O31 ^v	107.6 (4)
O22Zn12O41"	106.1 (3)	O21P31O32 ^v	110.0 (5)
O31 ⁱ -Zn12-O41 ⁱⁱ	116.0 (5)	O31`P31O32`	109.7 (6)
012Li21021	107.9 (18)	O11—Li32—O22"	106.8 (15)
012-Li21-041 ⁱⁱⁱ	110.2 (16)	O11-Li32-O31	118.3 (8)
012-Li21-042 ⁱⁱⁱ	117.5 (9)	O11—Li32—O32 ^{IV}	111.6 (14)
021-Li21-041 ⁱⁿ	102.2 (9)	O22"—Li32—O31	104.2 (14)
O21-Li21-O42 ¹¹	111.3 (17)	O22 ⁱⁱ Li32O32 ^{iv}	112.6 (9)
O41 ¹¹¹ —Li21—O42 ¹¹¹	106.6 (18)	O31-Li32-O32 ¹	103.3 (15)

Symmetry codes: (i) $\frac{2}{3} - y, x - y - \frac{2}{3}, z - \frac{2}{3}$; (ii) $\frac{2}{3} - y, x - y - \frac{2}{3}, \frac{1}{3} + z$; (iii) $\frac{2}{3} - x + y, \frac{1}{3} - x, \frac{1}{3} + z$; (iv) 1 - y, x - y, z; (v) $\frac{1}{3} - y, x - y - \frac{1}{3}, z - \frac{1}{3}$.

A measurement of the second harmonic generation gave a value 0.9 times that of quartz, confirming the noncentrosymmetric nature of the space group.

The structure refinement was based on the model for α -LiGaSiO₄. Only the Zn and P atoms were refined anisotropically, as the loss of centrosymmetry led to an unfavorable reflection-to-parameter ratio. The chirality parameter was not refined as the structure deviates only slightly from centrosymmetry.

Data collection: UCLA CCP (Strouse, 1991). Cell refinement: UCLA CCP. Data reduction: UCLA CCP. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: NRCVAX (Gabe, Le Page, Charland, Lee & White, 1989). Molecular graphics: ATOMS (Dowty, 1994). Software used to prepare material for publication: NRCVAX.

We thank V. I. Srdanov for recording the second harmonic generation data.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: BR1128). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Dowty, E. (1994). ATOMS. A Computer Program for Displaying Atomic Structures. Macintosh version 3.1. Shape Software, Kingsport, USA.
- Elammari, L. & Elouadi, B. (1989). Acta Cryst. C45, 1864-1867.
- Elfakir, A., Souron, J. P., Robert, F. & Quarton, M. (1989). C. R. Acad. Sci. Ser. II, 309, 199-203.
- Feng, P., Bu, X. & Stucky, G. D. (1995). Angew. Chem. 34, 1745.
- Fleet, M. E. (1987). Z. Kristallogr. 180, 63.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Gier, T. E. & Stucky, G. D. (1991). Nature, 349, 508.
- Harrison, W. T. A., Gier, T. E., Nicol, J. M. & Stucky, G. D. (1995). J. Solid State Chem. 114, 249-257.
- Jensen, T. R., Norby, P. & Stein, P. (1995). J. Solid State Chem. 117, 39-47.
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber. Copenhagen: Munksgaard.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Strouse, C. E. (1991). UCLA Crystallographic Computing Package. Department of Chemistry, UCLA, Los Angeles, California, USA.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1996). C52, 1603-1605

NiHP₅O₁₄ Ultraphosphate

Annett Olbertz,^{*a*} Dörte Stachel,^{*a*} Ingrid Svoboda^{*b*} and Hartmut Fuess^{*b*}

^aOtto-Schott-Institut, Chemische Fakultät, Friedrich-Schiller-Universität Jena, Fraunhoferstrasse 6, 07743 Jena, Germany, and ^bStrukturforschung, FB Materialwissenschaft, Technische Hochschule Darmstadt, Petersenstrasse 20, 64287 Darmstadt, Germany. E-mail: de0s@hrzpub. th-darmstadt.de

(Received 9 November 1995; accepted 15 January 1996)

Abstract

The structure of the title compound, $NiHP_5O_{14}$, is built of two parallel chains interconnected to form a ribbon. The polyphosphate ribbons are coupled by hydrogen bonds.

Comment

The ratio between tetrahedra that are bridged via two O atoms (Q^2) and three O atoms (Q^3) is 2:3. These types of double chains and ribbons, respectively, are similar to those in ultraphophates with trivalent cations. Within the ribbons unusual distances are observed for P1—O11 and P5—O14. These bond lengths are long compared with typical values for unbridged O atoms. This can be explained by an additional H atom situated between the O atoms O11 and O14, belonging to Q^2 tetrahedra, and not coordinated to Ni. This assumption was confirmed by a difference Fourier map, which revealed an H atom covalently bonded to O11 and forming a hydrogen bond with O14. The O11…O14 and O14…H11 distance are 2.412 (1) and 1.402 (1) Å, respectively. The Ni—O distances are in the range 2.031 (2) to 2.080 (2) Å and

Fig. 1. The structure of NiHP₅O₁₄ as viewed along [010]. The atoms are drawn as circles of arbitrary radii: P large, O medium and H small. Only the bonding O, P and H atoms are shown.

Fig. 2. Ribbons of eight-membered rings of [PO₄] tetrahedra.

the O-Ni-O angles range from 86.13 (7) to 95.28 (7)° and from 175.08 (6) to 177.93 (6)°, resulting in slightly distorted isolated octahedra.

Experimental

The synthesis of NiHP5O14 was performed by tempering NiO with an excess of P_2O_5 and H_3PO_4 in a closed system at 665 K for several days. The reaction product consists of a glassy matrix containing crystals of different modifications of ultraphosphates and metaphosphates. Pale-green needleshaped crystals of the title compound were extracted from the soluble glassy matrix using water and subsequently washed with methanol and acetone.

Crystal data

		P1-08
$N_1HP_5O_{14}$	Mo $K\alpha$ radiation	P1—011
$M_r = 438.57$	$\lambda = 0.7107 \text{ Å}$	P1-09
Monoclinic	Cell parameters from 25	P1-05
$P2_1/n$	reflections	P2-07
a = 0.666(1) Å	$A = 3.30 - 11.15^{\circ}$	P2-010
u = 9.000(1) A	v = 3.50 - 11.15	P2-013
b = 8.062(1) A	$\mu = 2.817 \text{ mm}^{-1}$	P2-015 P3-01
c = 12.996(1) A	T = 299(2) K	P3-04 ⁱⁱ
$\beta = 97.262 (9)^{\circ}$	Prism	P3-010 ⁱⁱⁱ
$V = 1004.6(2) \text{ Å}^3$	$0.10 \times 0.08 \times 0.05 \text{ mm}$	07 Nil 04
Z = 4	Pale green	07 - Ni1 - 012
$D = 2.90 \text{ Mg m}^{-3}$	8	07 - Ni1 - 012 04 - Ni1 - 012
$D_x = 2.90$ Mg m		07—Ni1—01
Data collection		04—Ni1—01
Duiu collection		012-Ni1-01
Enraf–Nonius CAD-4	3151 observed reflections	07—Ni1—08
diffractometer	$[I > 2\sigma(I)]$	04—Ni1—08
$\omega/2\theta$ scans	$R_{\rm int} = 0.0269$	012-Ni1-08
Absorption correction:	$\theta_{\rm max} = 34.96^{\circ}$	01
y scan (North Phillips	$h = -15 \rightarrow 3$	07—N11—03
φ Scall (North, 11)	$n = -13 \rightarrow 3$	04 = N(1 = 03) 012 = N(1 = 03)
& Maillews, 1908)	$k = 0 \rightarrow 12$	012 - Ni1 - 03
$T_{\min} = 0.754, T_{\max} =$	$l = -20 \rightarrow 20$	08—Ni1—03
0.821	3 standard reflections	08'-P1-011
5521 measured reflections	frequency: 120 min	O8 ¹ —P1—O9
4415 independent reflections	intensity decay: 0.6%	011—P1—09
	5 5	08'—P1—O5
Refinement		011—P1—05
Rejinemeni		09P105
Refinement on F^2	$(\Delta/\sigma)_{\rm max} = -0.005$	$0/-P_2-010$
$R[F^2 > 2\sigma(F^2)] = 0.0302$	$\Delta \rho_{\rm max} = 0.662 \ {\rm e} \ {\rm \AA}^{-3}$	$07 - r^2 - 05$
$wR(F^2) = 0.0729$	$\Delta q_{\rm min} = -0.631 {\rm e} {\rm \AA}^{-3}$	010-12-03 07-P2-013
S = 1.023	Extinction correction: none	010 - P2 - 013
5 = 1.025	Atomic contection. none	05—P2—013
4415 reliections	Atomic scattering factors	O1-P3-O4 ⁱⁱ
185 parameters	from International Tables	O1—P3—O10 ⁱⁿ
$w = 1/[\sigma^2(F_o^2) + (0.0288P)^2]$	for Crystallography (1992,	Symmetry codes: (i)
+ 0.7054 <i>P</i>]	Vol. C, Tables 4.2.6.8 and	$\frac{1}{2}, \frac{1}{2} - z;$ (iv) $\frac{3}{2} - x.$
where $P = (F_0^2 + 2F_c^2)/3$	6.1.1.4)	(vii) x - 1, y, z
		· · · · · · · · · · · · · · · · · · ·

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i . \mathbf{a}_j.$

	х	у	z	U_{eq}		
Nil	0.80057 (3)	0.21038 (3)	0.00173 (2)	0.00787 (6		
PI	0.45945 (6)	-0.06925 (6)	0.16090 (4)	0.00833 (9)		
P2	0.56827 (6)	0.27257 (6)	0.16260 (4)	0.00721 (9)		
P3	0.99373 (6)	-0.06185 (6)	0.14203 (4)	0.00717 (9)		
P4	1.09090 (6)	0.27879 (7)	0.14675 (4)	0.00781 (9)		
P5	1.31132 (6)	0.40437 (7)	0.03340 (4)	0.00851 (9)		
01	0.8819 (2)	-0.0086 (2)	0.0617(1)	0.0116(3)		
02	1.0828 (2)	0.0980(2)	0.1877(1)	0.0130(3)		
03	0.9712 (2)	0.3374 (2)	0.0774(1)	0.0127 (3)		
04	0.9063 (2)	0.1930 (2)	-0.1237 (1)	0.0115 (3)		
05	0.4898 (2)	0.1187 (2)	0.1974(1)	0.0125 (3)		
O6	1.2318 (2)	0.2771 (2)	0.1001(1)	0.0121 (3)		
07	0.7048 (2)	0.2406 (2)	0.1309(1)	0.0121 (3)		
08	0.6322 (2)	0.0721 (2)	-0.0620(1)	0.0142 (3)		
09	0.3705 (2)	-0.1175 (2)	0.2524(1)	0.0115 (3)		
O10	0.5761 (2)	0.3936 (2)	0.2555(1)	0.0147 (3)		
011	0.5924 (2)	-0.1620 (2)	0.1756(1)	0.0187 (3)		
012	0.7157 (2)	0.4244 (2)	-0.0626(1)	0.0137 (3)		
013	0.4687 (2)	0.3544 (2)	0.0724 (1)	0.0157 (3)		
014	1.2867 (2)	0.3570 (2)	-0.0781 (1)	0.0176 (3)		
Table 2. Selected geometric parameters (Å, °)						
Ni1-07		2.0314 (15) P	3—02	1.620(2)		
Ni1-04		2.0353 (15) P4	4—03	1.453 (2)		
Ni1-012		2.044 (2) P	4 —O2	1.557 (2)		
Ni1-01		2.046 (2) P	4—O9''	1.559 (2)		

Ni1-012	2.044 (2)	P4	1.557 (2)		
Ni1-01	2.046 (2)	P4	1.559 (2)		
Ni1-08	2.058 (2)	P406	1.559(2)		
Ni1-03	2.080(2)	P5-012'	1464(2)		
P1-08'	1.466 (2)	P5-014	1489(2)		
P1-011	1.479 (2)	P5-013 ^{v1}	1 593 (2)		
P1-09	1 602 (2)	P506	1.601(2)		
P1-05	1.604 (2)	04—P3 ⁱⁿ	1.001(2)		
P2-07	1 454 (2)	08-P1'	1.466(2)		
P2-010	1.547(2)	09—P4 ⁱⁱⁱ	1,550 (2)		
P2_05	1.547(2)	010 P2 ⁱ	1.559(2)		
P2_013	1.565 (2)		1.008(2)		
P3_01	1.303 (2)	012 85	1.02 (4)		
P3 04 ¹¹	1.407(2)	012—F3	1.404 (2)		
P3 010 ⁱⁱⁱ	1.472 (2)	013—P3	1.595 (2)		
P3-010	1.008 (2)				
07—Ni1—04	175.92 (7)	O4"-P3-O10"	109.06 (9)		
07—Ni1—012	92.04 (7)	O1P3O2	109.69 (9)		
O4—Ni1—O12	86.94 (6)	O4"—P3—O2	107.5(1)		
07—Ni1—01	88.97 (6)	O10 ^m —P3—O2	97.67 (9)		
04—Ni1—O1	92.18 (6)	O3—P4—O2	116.48 (9)		
012-Ni1-01	177.93 (6)	O3P4O9"	115.75 (9)		
07—Ni1—08	88.70(7)	O2P4O9 ^{iv}	103.40 (9)		
O4—Ni1—O8	95.28 (7)	O3—P4—O6	115.36(9)		
O12-Ni1-08	92.09 (7)	O2-P4-O6	102.04 (9)		
O1Ni1O8	86.13 (7)	O9 ^{iv} —P4—O6	101.71 (9)		
07—Ni1—03	88.13(7)	O12 ^v —P5—O14	118.9(1)		
O4—Ni1—O3	87.95 (7)	O12 ^v P5O13 ^{v1}	110.5 (1)		
O12-Ni1-O3	91.78 (7)	O14—P5—O13 ^{vi}	105.9(1)		
O1-Ni1-O3	90.06 (6)	O12'-P5-O6	110.49 (9)		
O8-Ni1-O3	175.08 (6)	O14—P5—O6	109.5 (1)		
O8'—P1—O11	121.6(1)	O13 ^{vi} —P5—O6	99.77 (9)		
O8 ¹ —P1—O9	109.02 (9)	P3O1Ni1	137.4 (1)		
O11—P1—O9	108.7 (1)	P4—O2—P3	131.8(1)		
O8'—P1—O5	110.01 (9)	P4-03-Ni1	130.9(1)		
011—P1—O5	108.4 (1)	P3 ⁱⁱ —O4—Nil	125.85 (9)		
O9P1O5	96.02 (9)	P2-05-P1	138.3(1)		
O7—P2—O10	112.1(1)	P4—O6—P5	135.0(1)		
O7—P2—O5	115.85(1)	P2—07—Nil	141.3(1)		
O10-P2-O5	104.72 (9)	P1'-08-Ni1	136.1(1)		
O7—P2—O13	110.87 (9)	P4 ⁱⁱⁱ —O9—P1	131.3(1)		
O10-P2-O13	106.5(1)	P2-010-P3"	143.4 (1)		
O5—P2—O13	106.16 (9)	P1-011-H11	131. (2)		
O1—P3—O4 ⁱⁱ	122.30 (9)	P5`—O12—Ni1	139.9(1)		
O1—P3—O10 ⁱⁿ	107.8(1)	P2-013-P5 ^{vin}	144.7 (1)		
Symmetry codes: (i) $1 - x, -y, -z$; (ii) $2 - x, -y, -z$; (iii) $\frac{3}{2} - x, y - z$					
$\frac{1}{2}, \frac{1}{2} = z;$ (iv) $\frac{3}{2} = x, \frac{1}{2} + y, \frac{1}{2} = z;$ (v) $2 = x, 1 = y, -z;$ (vi) $1 + x, y, z;$					
21,2 77,77,2 77,	2 272 27	., .,. ,, .,	, , , , , , , ,		

Data collection: Diffractometer Control Software (Enraf-Nonius, 1993). Cell refinement: Diffractometer Control Software. Data reduction: REDU4 (Stoe & Cie, 1992). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: PLUTON93 (Spek, 1993). Software used to prepare material for publication: SHELXL93.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: DU1148). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Enraf-Nonius (1993). Diffractometer Control Software. Release 5.1. Enraf-Nonius, Delft, The Netherlands.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Spek, A. L. (1993). PLUTON93. Program for the Display and Analysis of Crystal and Molecular Structures. University of Utrecht, The Netherlands.
- Stoe & Cie (1992). *REDU4. Data Reduction Program.* Version 7.03. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (1996). C52, 1605-1607

Hexaaquagallium Hexahydrogenhexamolybdocobaltate(III) Decahydrate†

Kaliyamoorthy Panneerselvam,^a Manuel Soriano-García,^{a*} Saúl Holguin-Quiñones^b and Elizabeth M. Holt^c

^aInstituto de Química, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán, México DF 04510, México, ^bArea de Química, Departamento de Ciencias Básicas, UAM, Unidad Azcapotzalco, Av. San Pablo 180, México DF 02200, México, and ^cDepartment of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA. E-mail: soriano@servidor.unam.mx

(Received 31 October 1995; accepted 19 December 1995)

Abstract

The structure of hexaaquagallium(III) hexahydrogentetracosaoxocobalt(III)hexamolybdate decahydrate, [Ga-(H₂O)₆][Co(OH)₆Mo₆O₁₈].10H₂O, includes a polyanion with the so-called Anderson structure, of general formula H₆[X^{n+} Mo₆O₂₄]⁽⁶⁻ⁿ⁾⁻ (X is a heteroatom), where

all the O atoms in the central XO_6 octahedron are protonated. The Ga³⁺ ion is coordinated by six water molecules and the Co³⁺ ion by six O atoms. Both ions are located at inversion centers.

Comment

The title compound was investigated as part of structural studies on polymolybdate salts. *B*-type Anderson structure heteropolyanions (Anderson, 1937), *i.e.* containing a heteroatom X of low oxidation state within a protonated polyanion such as $H_6[X^{n+}Mo_6O_{24}]^{(6-n)-}$, have been reported for heteroatoms Cr^{3+} (Perloff, 1970), Cu^{2+} (Ito, Ozeki, Ichida & Sasaki, 1989) and Co^{3+} (Nagano, Lee, Ichida & Sasaki, 1990).

The present polyanion, [Co(OH)₆Mo₆O₁₈]³⁻, containing Co^{3+} as the heteroatom but Ga^{3+} as the counter ion, is close to having $D_{3d}(\bar{3}m)$ symmetry. It consists of a ring of six distorted MoO₆ octahedra surrounding one Co atom; the six Mo atoms form an almost planar (r.m.s. deviation 0.003 Å) hexagon with an edge of approximately 3.36 Å. The O atoms in the anion can be divided into three groups, Oc, Ob and Ot, where Ot represents a terminal O atom bound to one Mo atom, Ob represents a bridging O atom bound to two Mo atoms and Oc represents a central O atom coordinated to both the Co atom and an Mo atom. The Mo-O distances are Mo-Oc 2.282 (4)-2.352 (4), Mo-Ob 1.944 (4)-1.971 (4) and Mo—Ot 1.715(5)-1.749(4) Å. A similar trend has been found in Ba₃[Co(OH)₆Mo₆O₁₈]₂.20H₂O (Soriano-García, Panneerselvam & Holguín-Quiñones, 1996), $(C_{12}H_{24}O_6K)_2K[Co(OH)_6Mo_6O_{18}].12H_2O$ (Nagano, Lee, Ichida & Sasaki, 1990) and Na₃[Cr(OH)₆Mo₆O₁₈].-8H2O (Perloff, 1970).

The Co^{3+} and Ga^{3+} ions both have coordination number six. The Co^{3+} ion is coordinated to six Ocatoms at an average distance of 1.967 (4) Å. Of the 16

Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are shown at the 50% probability level.

[†] Contribution No. 1424 of the Instituto de Química, UNAM.